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1. We will consider the anomalous boundary-layer motion which develops 

when a semi-infinite flat plate initially at rest in a viscous incom- 

pressible fluid begins abruptly to move parallel to itself with a constant 

velocity u . The problem of finding such a flow may be formulated in the 

usual way 1 1 , P with the motion transformed by considering the plate as 

motionless and the fluid as moving with the velocity u0 at infinity, in 

terms of an integration of the equations 

(1.1) 

under the conditions that 

u. = 0-o for y>O, x=0, t>O or x>O, t =O 

u=v=o for y=o, z>o, t>o (I-3 

u = u0 for y-+cq ~20, t>O 

Here XOY is an orthogonal system of coordinate axes whose origin is 

at the leading edge of the plate and whose x-axis is directed along the 

plate parallel to the velocity of the oncoming stream; t is the time; 

v is the coefficient of kinematic viscosity; and u and v are the pro- 

jections of the velocity at any point in the boundary layer on the axes 

of x and y respectively. 

In analysing possible methods for solving the problem as posed here 
it is necessary first of all to point out one special feature, which is 

that the method of successive approximations [ 2 1 commonly used in the 

solution of problems of nonstationary boundary layers does not lead tc. 

a correct result in the present case. This fact follows at once from an 

inspection of the structure of the first approximation, obtained as a 

result of discarding the convective terms in (1.1). This approximation 

evidently corresponds to the development of a flow near a flat plate 
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infinite in both directions and thus in independent of L. &I addition, 

succeeding approximations are all found to be Adentical with the first. 

Since the motion should reflect the influence o’f the leading edge of the 
plate on the formation of the boundary layer and consequentiy should de- 
pend on X, no useful solution is obtained. 

569 layer on a flat plate 

Application of other approximate methods of boundary-layer calculation 

f3.4 I et al-* f has revealed certain novel features of the difficulty 
in the present problem. For example, an approximate solution based on the 

method of Shvets 14 1 calls for the integration of the equation 

(1.3) 

where 6(x, t) is the thickness of the boundary layer and 46 = u$*. In 
addition, the function 6 is required on physical grounds to satisfy the 

conditions 

sp=o for t = 0, qa=o for 2 = 0 

The solution which is obtained is 

s= V=P 

i 

r>s -Got 
(W 

Vt6vx I u,, o-$;z<$u,t 

Hence it is seen that two regions. separated from each other by a 
moving rectilinear boundary at x = 3/3 i]ot, exist near the plate. On one 
side of this boundary (x > 3/g U,t) there is a non-stationary motion 
which is unaffected by the leading edge of the plate, and on the other 
(0 < x < 3/S uott there is a stationary motion corresponding to the solu- 
tion of the Slasius problem. As time goes on the stationary regime spreads 
toward larger values of x and gradually occupies the whole plate. 

The solution represented by (1.4) has the defect that the first partial 
derivatives of the function 6(x, t) are discontinuous at x = 3/3 Vo t. This 
in turn implies a discontinuity in the first partial derivatives of the 
velocity component u at x = 313 Vu t. and also a discontinuity in the 
velocity component v. This result is explained by the fact that (1.4) was 
constructed as an integral surface of (1.3) passing through the two 
mutually perpendicular straight lines x = 0 and t = 0 in the space 
(x, t,+). The necessity for just such a solution is dictated by the initial 
value problem (1. I), (1.3) and is evidently connected with the peculiarity 
already noted. 

Similarly, the construction of an “outer” solution, valid in some 

* In particular, an aerodynamic method for the computation of non- 
stationary boundary layers was developed by Struminskii 15 1, and the 
problem of the plate was treated by way of example. 
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measure near the edge of the boundary layer, leads to an expression 

the form 

( erf 2 = - ;; \ e-Q) 

0 

of 

(1.5) 

which follows if the multiplicative factor II is replaced by uO in the 

transport terms of (l-11, and au/d, is put equal to zero. The same con- 

clusions can be &Fawn from (1.5) as from the formulas (1.4). The only 

difference between (1.4) and (1.5) is found in the velocity of propaga- 

tion of the boundary between the stationary and nonstationary motions. 

This velocity is equal to 2/g IJO in formula (1.4) and to uO in (1.5). 

It must be concluded that the results enumerated above are a conse- 

quence of the incorporation of the boundary-layer theory in the simplifie 

mathematical formulation of the original problem in the form (l-11, (1.2) 

In reality, during the first instant of time after the plate has begun to 

move in the fluid the influence of the leading edge can only make itself 

felt for small values of X, for which the local Reynolds numbers U,Z/~ 

are not large. This influence is subsequently propagated downstream towar 

larger values of X. Thus the formation of the flow near x = 0 in the firs 

moment of time plays an important role in the later development of the 

boundary layer on the plate. To obtain a correct picture of the flow in 

this region it is necessary to turn to a solution of the full Navier- 

Stokes equations, inasmuch as the statement of the problem for small 

U,,X/~ in the form (1.11, (1.2) exhibits the same deficiencies as in the 

case of stationary motion [ 6 I. In the light of the remarks already made, 

we will now proceed to investigate the initial period of development of 

the flow on a semi-infinite plate through an integration of the Navier- 

Stokes equations. 

2. The Navier-Stokes equations may be reduced to a single equation for 

the stream function $ in the form 

where 
I> (0) = K (4) (2.1) 

We will look for a solution of (2.1) with the aid of the method of 

successive approximations. It is known that in the first moment of time 

the motion of the fluid near the plate will be potential. For very Small 

t. therefore, the stream function $J may be taken as equal to $0 = uoy. 

On substituting this function $o in the right-hand side of the equation 
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(2.1), we will arrive at an equation L(tiIi) = 0. Differential equations 
for succeeding approximations may be obtained in a similar way. ‘fhe method 
indicated for solving (2.1) is equivalent to the representation of the 
stream function $ by a series 

~=JTo+~l+...+On_-l+~n+... (2.2) 

the terms of which satisfy the following system of equations: 

40 = UOY 

L ($1) = K ($01 

L ($2) = K ($0 + $1) - K (+o) 

. . . . . . . . . . . . . . 

-T,(O,)=K(~J,+~J~+. . . +L-J-KNo+h+. . . +4+,-J 
. . . . . . . . * . . . . . . . . . . . . . . . . . . . . . (2.3) 

we will limit the investigation to the first approximation. Noting 
that ui = a$,/ dy, we can write down the equation for the first approxi- 
mation to the velocity component ul: 

/au, A \ a-t- -vnlq ) = 0 au1 
Bmi -- =vfyl 

at (2.4) 

At the same time, physical considerations which are not confined to 
the framework of the boundary-layer theory require the boundary and initial 
conditions to be prescribed in the following manner: 

111 = 0 for t=O 

ur = - uo for y=O, x>O 

z&r+ 0 for Iyl+oo,z>O 

u1+0 for 1x1 or IyI+m, r<O 

Further, putting 

the problem (2.41, (2.5) when written in terms of the two independent 
variables q.6 becomes 

u1-c 0 for q-+03, e- 03 

ur=-uu, for q=O, E>O 

u1-P 0 for Iql-*aJ, E>O 

lbr+o for 1~11 Ion 151-c~, E<O 

(2.5) 

(2.7) 

‘faking into consideration (2.2) and the expression (2.6) for $i, the 
series (2.2) may be written in the form 
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98s ht 01 + l l l (2.8) 

Thus it Is seen from (2.81 that construction of a solution of the 
equation (2.1) by the method of successive approximations is nothing else 
but a search for a solution of (2.11 in the form of a series in powers of 
the time t. 

In investigating the development of the flow near the plate in the 
initial period of the motion we will restrict ourselves to the first two 
terms in the expansion (2.8) with the understanding that UOdvt >> Uo2t, 
or uQ’t/v << 1. Our problem will then consist of finding solutions of 
(2.41, (2.51. It should be noted that the equation (2.4) and the condi- 
tions (2.5) are quite often encountered in problems of a similar nature 
I7, Q 3. In particular, Howarth EQ 3 has investigated the development of 
the fluid motion near a semi-infinite plate (y = Q, x > 01 which at the 
instant t = Q begins to move with a velocity f$ parallel to its lateral 
edge. By tracing the analogy between the mathematical formulation of the 
problem of Howarth [g 1 and the.problem (2.4). @.5), the velocity com- 
ponent u may be accurately represented up to the second approximation in 
the following two ways. 

In the form of a series written in polar coordinates 
(2.9) 

where R = 1/V*+ t2 and 6 = arc tg Cq/&. The expression (2.9) is con- 
venient for calculations when R is small, in which case the series con- 
verges extremely rapidly. 

In the form of definite integrals 

where 

u U -_ 
VO 

=erf+-q+J, for x>O, -Uft =1-J1 for x<O f2.10) 

which are correct everywhere, but are convenient for calculations when 
R is large. 

The results of computations c 8 1 according to formulas (2.91, (2*10) 
are presented in Fig. 1, where a/u0 is shown as a function of [ for 
various values of ‘7. The curves in Fig. 1 give a graphic picture of the 
way in which the motion of the fluid along the plate develops in the 
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first instant of time. Thus for I: > 0 the flow may be divided into two 
regions. The first region, described approximately by 6 > 3, is character- 
ized by the fact that the influence of the leading edge of the plate is 

small, so that the motion of the fluid corresponds to the flow near a 
plate infinite in both directions; that is. a/u, = erf )r, 9. In the second 
region (0 < 6 < 2) the action of the leading edge is important in the 
motion of the fluid, and the variable x enters into the expression for 
the velocity. From Fig. 1 it is seen that there does not exist any sharp 
boundary between the regtons just described. Nevertheless, we will ende- 
avor tentatively to specify the shape of this boundary by introducing a 
criterion for the relative influence of the x-coordinate (leading edge 
of the plate) on the longitudinal velocity component u: 

au au 
-82 I( 1 ar x=0’ 

Then the equation of the boundary may be written down as follows: 

where c is a sufficiently small quantity. The dependence of rj on &?, com- 
puted according to formula (2.111 for E = 0.03, is presented in Fig. 2. 
The nature of this dependence allows the conclusion first of all that the 
influence of the edge of the plate extends over a larger interval as 9 
increases. Furthermore. for large ‘I the curve in Fig. 2 approximates to 
a line f = const., whereas for small 9 it approaches the value e = 0 with 
a certain slope. The latter result appears to be a consequence of the 
fact that for any small 5 not equal to zero. some ‘7 << 6 may be chosen 
such that the equation (2.11) will be satisfied. 

Fig. 1, Fig. 2. 

From the considerations which have been brought out relative to the 
two regions of the flow and to the boundary between them, it may be con- 
cluded that in the initial period of the motion the influence of the 



574 L.A. Rozin 

leading edge of the plate will be propagated along the x-axis in a region 
whose width is proportional tod(vt). This is evidently explained by the 
fact that at the very beginning of the motion, when\l(vt)>> “Jot, diffusio 
plays a dominant role in the movement of vorticity along the x-axis. In 
the course of time the quantity u9t becomes larger than d(vt) and the 
propagation of vorticity begins to depend on transport by the flow past 
the plate. During this period the velocity of transport of vorticity 
reaches the magnitude Vq at the edge of the boundary layer, and conse- 
quently the width of the region of influence of the leading edge of the 
plate for large y is approximately equal to Uut. For decreasing values of 
y the width of the region in question decreases because of the retarding 
action of the plate, and finally for very small y the region of influence 
in terms of the coordinate x near the plate vanishes altogether. These 
results correspond to some extent to the approximate solutions presented 
above for the problem (l.I), (1.21, In fact, th e solution (I.41, which is 
obtained with the aid of methods valid for small y. leads to a width 
equal to 3/8 uot for the region of influence of the leading edge of the 
plate, On the other hand, the formula (1.5), obtained through the con- 
struction of an “outer” solution valid for large y, gives the width of 
this region as Uot. 

It should be observed that the solution (2.91, (2. IO), in contrast to 
known solutions for the problem of the stationary flow past a semi-infinf: 
plate II.8 1 is accurate for all values of x. This raises the possibility 
of studying certain interesting aspects of the flow near a plate with the 
aid of (2.91, (2.10). In particular, the influence of the plate on the 
external flow of fluid situated to the left of the axis oy may be follower 
using the solution (2.91, (2.10). Thus, if 6 is negative. it is seen from 
the second formula (2.10) that for large R and finite Q the dominant term 
in the asymptotic expansion for afuu does not depend on q. and the curves 
in Pig. 1 tend to one and the same value. Moreover. substantial changes 
in velocity ahead of the plate occur mostly in the region 161 < 2. 

I wish to express my deep appreciation to L.G. Loitsianskfi and L.G. 
Stepaniants for their valuable advice during discussions of the Present 

work. 
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